However, the advancement of this methodology has enabled the use of multiple barcodes of a single cell compared with one single-cell barcode, which greatly increases the diversity produced

However, the advancement of this methodology has enabled the use of multiple barcodes of a single cell compared with one single-cell barcode, which greatly increases the diversity produced. protein 9 strategies. DNA barcoding Rabbit Polyclonal to LRP11 for cell development tracing has advanced to include single cells and single nucleic acid mutations. In the present study, the latest research findings on the development and differentiation, culture techniques and labeling and tracing of UCBSCs are reviewed. The present study may increase the current understanding of UCBSC biology and its clinical applications. (1) indicated that UCB is a potential source of hematopoietic stem/progenitor cells. UCB stem cells (UCBSCs) are a type of primitive undifferentiated cells that have the same multidirectional differentiation potential as bone marrow stem cells. UCBSCs are able to self-renew and proliferate. They may differentiate into various cell or tissue types under the influence or induction of specific factors (2C5). UCBSCs have a wide range of sources and their application is not limited by ethics concerns and/or guidelines (6). Therefore, they are considered an important source of stem cells for transplantation and have huge potential to be widely used in clinical tissue engineering and other stem cell therapies (7,8). The detailed investigation and understanding of the functions of UCBSCs have laid a foundation for their successful clinical application. However, the establishment of UCB cells and their differentiation remain incomplete (9,10). Although tracing technology is usually used to understand cell function, it exhibits several limitations. The traditional tracer technique cannot differentiate the following generations of cells from the primary cells at a large scale and the lineage relationship between the cells is not clear (11,12). Recently, DNA barcode technology used for cell development tracing has achieved lineage tracing at single-cell and single-nucleic acid mutation resolution (13). DNA barcoding AZ6102 combined with sequencing technology clearly demonstrated the relationship among splinter AZ6102 cells by labeling cells with DNA barcodes, tracing their developmental history and stacking them to form a lineage development tree in order to identify their origin, development and differentiation. This is an effective strategy for tracking large numbers of cells both spatially and temporally (14). This may aid the understanding of the self-renewal mechanism of UCBSCs and lays a foundation for their clinical application. In the present study, the differentiation characteristics of UCBSCs were reviewed, including the research progress of the latest methods of DNA barcode technology. This information aims to increase the AZ6102 current understanding of the biological roles and clinical applications of these cells. 2.?Differentiation of UCBSCs Stem cells possess the potential for self-renewal and multi-differentiation, which may be used to replace damaged cells and exert significant therapeutic potential in regenerative medicine. Several types of stem cells have been detected in UCB, including the following: Umbilical cord hematopoietic stem cells (HSCs), endothelial progenitor cells, mesenchymal stem cells (MSCs), unrestricted somatic stem cells and multipotent progenitor cells. HSCs, which have a relatively high content in UCB, may be divided into two cell types, namely CD34+ and CD34?, among which CD34+ cells account for 95% of the population. MSCs are mainly derived from UCB and the bone marrow and their cell phenotypes include CD133, CD34 and CD45. Although MSCs are rarely found in cord blood, their differentiation ability AZ6102 is potent. Studies have indicated that UCBSCs may be induced to differentiate into nerve cells, chondrocytes, hepatocyte-like cells, fat cells, osteoblasts and islet-like cells under appropriate microenvironmental conditions. In 2003, Mitchell (15) induced the differentiation of UCBSCs using -mercaptoethanol, antioxidants and dimethylsulfoxide. It was indicated that 80% of the cells exhibited a neuron-like appearance. Furthermore, a unique Nissl body structure of neuron cells was noted following 12 h of incubation. Fu (16) cultured UCBSCs together with the primary cortex of mice for 4 days. In total,~50% of the cells developed into neural cells, ~33% of the cells differentiated into astrocytes and ~10% into oligodendrocytes. This finding indicated the presence of neural stem cells in UCBSCs, which were able to differentiate AZ6102 into neural cells..